

Department of Environmental Conservation

DEC Sustainability Policy Summary

Policy Goals and Actions

Materials and	Energy	Air	Water	Land and
Waste		Emissions	Consumption	Ecosystems
 Goals: Strive for Zero Waste Minimize the use of hazardous wastes and material Actions: Recycle on-Site waste Use Green Products Regenerate Carbon Use pre-excavation sampling to minimize volume of soils transported to landfills Consider rail transport for soil disposal with long transportation distances Purchase products from ethical sources 	 Goals: 100% renewable by 2030 Carbon neutral by 2050 Actions: Use variable speed drives Install solar panels, wind turbines or geothermal heat exchangers Use high efficiency equipment Consider pulsed operation of equipment as possible Consider energy consumption in remedy selection 	 Goals: At least 85% decrease in GHG emissions by 2050 with any remaining offset 100% electrified light-duty fleet by 2035 and medium- and heavy-duty fleet by 2040 Actions: Monitor & reduce GHG emissions Use equipment with exhaust filtration Incorporate fuel efficient or electric vehicles into fleets Encourage the use of renewable fuels, such as bio-diesel for heavy equipment 	 Goals: Minimize water usage Restrict use of bottled water at State facilities Actions: Reuse extracted groundwater for irrigation/cooling Use treated ground- water for injections Consider groundwater sampling techniques that minimize purging Take steps to allow employees to refill reusable bottles rather than using single-use ones (in accordance with proper health/ safety protocols) 	 Goals: Species and Habitat Protection Promote Green & Resilient Infrastructure Actions: Incorporate pollinator friendly plants into restoration Maintain & enhance existing habitat Minimize habitat destruction during investigation and remediation Encourage on-site stormwater infiltration when possible

NEW
YORK
STATEDepartment of
Environmental
ConservationGuide for Implementing Green & Sustainable
Remediation In Project Lifecycle*

Core Elements: 1. Materials & Waste; 2. Energy; 3. Air Emissions; 4. Water Consumption; and, 5. Land and Ecosystems

STEP 1	STEP 2	STEP 3	STEP 4	STEP 5
Site Characterization/ Remedial Investigation • Minimize mobilizations • Use local contractors and staff • Consider sampling techniques, field analysis kits or advanced tools (MIPs/ CPT) • Minimize investigation derived waste • Include GSR metrics summary in SCR and RIR	 Feasibility Study & Remedy Selection Identify Greener technologies/process options Define RAOs independent of GSR Generate estimate of treatment areas including areas, volumes, COC concentrations & mass per media, zone & phase Determine level of GSR analysis (1, 2 or 3) based on site complexity (SURF 2009) Include GSR consider- ations in remedy selection (as balancing criteria) 	<section-header><section-header></section-header></section-header>	 Periodic Review Reports Assess engineering controls with respect to climate change vul- nerability (flood, winds, temperature, etc.) Review OM&M data and reduce volumes/frequen- cies as appropriate Propose corrective mea- sures or changes to SMP Include GSR metrics summary with PRR and assess against prior reports Hint: Improved GSR metrics (i.e., energy effi- ciency) should also result in overall project cost savings. 	 Remedial System Optimization Determine if system configuration and operation changes are needed to achieve RAOs Propose modifications to system operations, components, controls or maintenance schedule to enhance performance and improve GSR metrics (e.g., using smaller, equally protective equipment) Assess potential for renewable energy to reduce/offset electrical or fuel consumption

* Not intended to be comprehensive. DER-10, DER-31 and CP-49 should be consulted for additional guidance, strategies and tactics.

Guide For Implementing Green and Sustainable Remediation In Feasibility Studies*

Core Elements: 1. Materials & Waste; 2. Energy; 3. Air Emissions; 4. Water Consumption; and, 5. Land and Ecosystems

Department of Environmental

Conservation

STEP 1	STEP 2	STEP 3	STEP 4	NEXT STEP: DESIGN
 Define Remedial Action Objectives (RAOs) Requires completed CSM, completed RI, stakeholder input, understanding of potential future site uses Review NYSDEC DER-31, CP-49 for GSR considerations Consider maintaining or enhancing land use in the RAOs, including establishing valuable habitats 	 Requires treatment area definition: areas, volumes, COC concentrations & mass per media, zone & phase Develop/screen alternative technologies and process options for each treatment area (individually or in treatment train) 	 Detailed Analysis of Alternatives Identifying "Greener" Technologies/Process Options Select Assessment Level: 1, 2 or 3 Level 1: Follow Best Management Practices (BMPs) Level 2: Use GSR Tools (SiteWise® or SEFA®) Level 3: Develop site specific tools (complex sites) Assemble remedial alternatives/ response actions Develop conceptual construction and OM&M plans for cost estimating and GSR analyses Compare remedial alternatives against threshold, balancing & modi- fying criteria plus GSR Hint: Don't focus on "Greening" technologies with minor process components at this stage. 	 Remedy Selection Consider all screening criteria as part of selection Confirm that full lifecycle of project is considered View project holistically All parts of the remedy should be considered (including future off-site impacts such as landfill operations) Hint: GSR is not a basis for a less protective or no-remedy option. RAOs defined in Step 1 are the driver. GSR metrics are a "balancing criteria". 	 Remedial Design "Greening the Remedy" Consult and apply BMPs to small and large projects: track and report using appropriate tools Remedy should be designed for full lifecycle: Consider installation, start- up, OM&M and site closure Document and track GSR metrics through design <i>Hint: many small</i> steps can add up to large project impacts.

* Not intended to be comprehensive. DER-10, DER-31 and CP-49 should be consulted for additional guidance, strategies and tactics.

Guide for Implementing Green and Sustainable Remediation in Site Management Plans (SMPs)

Core Elements: 1. Materials & Waste; 2. Energy; 3. Air Emissions; 4. Water Consumption; and, 5. Land and Ecosystems

Engineering Controls	Remediation Systems and Controls	Building Operations	Inspection	Metrics & Reporting
 As possible, incorporate vegetated caps over gravel or concrete, based on site conditions Use capped areas for ecosystems or habitat enhancement Consider remote monitoring for engineering controls as applicable Use renewable energy sources for active mitigation systems with appropriate backup power to ensure active mitigation systems remain active. 	 Effectiveness & Protectiveness highest priority Perform routine monitoring and evaluations to minimize inefficiencies Reduce waste (e.g., reuse treated water, regenerate carbon) Use renewable energy to power portions of systems with appropriate backup power to ensure active mitigation systems remain active Use wind turbines on passive venting stacks to enhance flows 	 Use high efficiency HVAC equipment Maintain modest HVAC setpoints Ensure proper building insulation Consider on-Site renewable energy generation Use timers on lights and use LED bulbs Collect stormwater for irrigation use Use solar power for exterior lighting 	 Install Telemetry for remediation and monitoring systems Reduce inspection frequency as appropriate Reduce number of sample points as appropriate Use efficient vehicles/ mass transit for travel Consider passive samplers to reduce purging 	 Be accurate in GSR reporting Identify multiple small GRS actions in routine activities Update current GSR measures in Periodic Review Reports (PRR) and Remedial System Optimization (RSO) Consider land and ecosystem use

Not all GSR options are included in this graphic

Further Reference: USEPA Green Remediation Best Management Practice: Site Investigation and Environmental Monitoring

Guide for Implementing Green and Sustainable Remediation in Excavation Projects

Core Elements: 1. Materials & Waste; 2. Energy; 3. Air Emissions; 4. Water Consumption; and, 5. Land and Ecosystems

Planning	Equipment	Disposal	Water	Restoration
 Complete comprehensive delineation to limit the excavation volume Incorporate direct push sampling to save energy Use field test kits on-Site or nearby laboratories Identify local sources for backfill Establish staging areas to minimize disruption Perform reuse sampling to minimize imported backfill 	 Select suitably sized equipment Use surveyors/on-board GPS to minimize over excavation Prevent engine idling Retrofit equipment with additional exhaust filters Use ultra-low sulfur or bio-diesel Use wheel cleaning stations with recycled water Conduct maintenance on-time Minimize noise and vibrations 	 Use local disposal facilities when possible to minimize transportation Use treatment facilities as possible to minimize long term monitoring requirements Allow for solids to dewater prior to shipping off-site to minimize transportation weight Minimize volumes going to hazardous waste landfills 	 Use treated water for dust suppression and other on-site needs Cover soils with tarps/ mats for dust Minimize off-site disposal of water Control/capture stormwater runoff before entering excavation Restore area to allow for stormwater infiltration Consider remediation amendment blending in bottom of excavations to reduce groundwater impacts 	 Minimize ecosystem disturbance Re-use uncontaminated organic debris for mulch, in-fill or compost Encourage landscaped caps, with pollinator friendly vegetation Use native species Incorporate green infrastructure into restoration Source topsoil locally Use local labor to monitor restoration

Not all GSR options are included in this graphic

Further Reference: USEPA Green Remediation Best Management Practices for Excavation and Surface Restoration

Guide for Implementing Green and Sustainable Remediation in Pump & Treat Projects

Core Elements: 1. Materials & Waste; 2. Energy; 3. Air Emissions; 4. Water Consumption; and, 5. Land and Ecosystems

Planning & Installation	Materials & Waste	Operation & Monitoring	Energy	Retrofits & Optimization
 Collect site specific design data for capture zones and flow rates (aquifer tests) Design efficient extraction wells Flow rates are most critical design criteria Plan for later project stages: Leave additional capacity in system Scale back as influent concentrations decrease 	 Consider groundwater re-injection/reuse Consider discharge options (POTW, Surface water, Groundwater) Use filters that can be backwashed to avoid filter disposal Consider sequestering agents to avoid excess filtering and solids disposal Use re-generated GAC when possible, and send spent GAC for regeneration 	 Automate the system and use telemetry systems to reduce site visits as much as practical Use local staff for routine inspections Incorporate dewatering in waste treatment to reduce weight Conduct energy intensive operations as batch processes, operate at off-peak hours Incorporate energy storage capacity to continue operating monitoring equipment during grid outages 	 Install renewable energy on site to provide supplemental system power Use variable frequency drives to reduce pump throttling Use high efficiency pumps for extraction and processes Use solar heating or heat exchangers to reduce HVAC costs Consider pulsed pumping to reduce overall energy use 	 Adjust operations for actual influent concentrations, not historic values Switch to less energy intensive processes as concentrations diminish Look for opportunities for in-situ treatment in portions of plume Conduct bench scale testing for alternate chemicals/loading rates to maintain minimal dosage rates

Not all GSR options are included in this graphic

Department of Environmental

Conservation

Further Reference: USEPA Green Remediation Best Management Practices: Pump and Treat Technologies

Department of Environmental Conservation

Guide for Implementing GSR in Soil Vapor Extraction (SVE) Projects

STEP 1 STEP 2 STEP 3 Construction BMPs Define Treatment Design GSR Into the Remedy - Optimize Use of "Greener" **Objectives Piping Network: Process Options** · Overhead piping indoors when possible Reduce friction losses by increasing Determine the pipe diameter treatment objectives: Minimize mobilizations/demobiliza-· Reduce pipe lengths by manifolding wells Timeframe, Prevention tions during PDI & pilot testing · Pitch pipes to reduce condensate producof Contaminant Conduct pilot tests whenever possition Migration, Continued ble Well Drilling: Site Use · Ensure efficient system design (con-· Use emission control technologies sult BMPs) Is the treatment zone Ensure good well seals: prevent short • Design for the entire SVE system understood? Are precircuitina lifetime design investigations Reduce equipment mobilizations - Select blowers that are appropriate for needed to refine extent lifecycle Avoid using drilling fluids if possible of treatment? - Incorporate VFDs into system design · Reduce concrete/asphalt removal & Are non-aqueous replacement Consider horizontal wells for shallow phase liquids present? applications · Reuse native soils to the extent possible Consider sequenced Include automation when possi-Recycle asphalt and concrete rather effluent treatment ble than offsite landfilling (e.g., oxidizer for initial Use regenerated/reactivated vs. Consider sharing trenches with other operation) virgin GAC utilities as possible Note: Electrical · Consider multiple effluent treatment **Treatment System Enclosure:** options consumption from a Use insulation to reduce heating/cooling typical SVE system will - Establish triggers to change to lower costs be equivalent to powering energy technologies Consider solar/wind energy for lighting, 7 homes for a year Balance number of wells with operatcoolina ing duration Consider tall stack to reduce treatment Minimize aboveground enclosure size requirements · Protect effluent stack from rain water

STEP 4

OM+M BMPs

- Consider treatment/reuse/recharge of treated condensate
- Target portions of operations
 with largest footprint
- Focus operations on wells with high VOC yield
- Pulsing/Cycling Operations:
 - Group SVE Wells into zones
- Rotate to optimize VOC mass removal
- Potential for reduced GAC consumption
- Reduce site visit frequency after optimization
- Use local staff for site visits
- Plan for system shut-off/conversion to passive (e.g., wind turbine) with appropriate backup power to ensure active mitigation systems remain active
- Consider procurement of renewable energy credits
- Track GSR metrics during operations:
 - Check against design & construction phase projections
- Document reductions in energy & material consumption
- Assess in PRR and RSO phase

Not all GSR options are included in this graphic.

Further Reference: USEPA Green Remediation Best Management Practices: Soil Vapor Extraction

NEW YORK STATE Env Con

Department of Environmental Conservation

Guide for Implementing Green and Sustainable Remediation in Injection Projects

Core Elements: 1. Materials & Waste; 2. Energy; 3. Air Emissions; 4. Water Consumption; and, 5. Land and Ecosystems

Planning & Scoping	Materials	Means and Methods	Equipment and Waste	Monitoring
 Conduct pre-design investigation (PDI) to define treatment area well before injection design Incorporate direct sensing equipment in PDI Conduct bench or pilot scale testing as possible to gain site specific design data including flow rates, loading rates and radius of influence (ROI) Consider tow behind renewable energy equipment to off-set energy use 	 Use groundwater for injections When possible, select amendments made from recycled materials or renewable resources Decontaminate hoses and pumps after projects and reuse in subsequent events Use long lasting amendments if using temporary injection points Use recovered stormwater, as possible 	 Use permanent injection wells in source areas/zones where multiple rounds of injections are expected Recirculate groundwater to improve distribution, contact, treatment control/efficiency Use gravity feed when appropriate to reduce operating equipment Evaluate delivery approaches to overcome access limitations, including: horizontal & angled wells or hydraulic manipulation 	 Avoid idling drill rigs/ Geoprobes™ during injections Do not run generators or compressors when not in use/under load Recover any surfaced injection fluid and prevent it from entering stormwater infrastructure Reuse recovered injection fluid as possible Retrofit equipment to reduce emissions 	 Sample only wells that will provide actionable data Collect sufficient data to understand remediation progress Use passive samplers when COCs allow Use local resources/ staff for monitoring events Monitor wetlands/ surface waters during injections to prevent impacting natural receptors

Not all GSR options are included in this graphic

Further Reference: USEPA Green Remediation Best Management Practices: Bioremediation

Guide for Implementing Green and Sustainable Remediation in Thermal Remediation Projects

Core Elements: 1. Materials & Waste; 2. Energy; 3. Air Emissions; 4. Water Consumption; and, 5. Land and Ecosystems

 Conduct detailed pre-de- sign investigation (PDI) to define treatment area before design Limit treatment area to source zone with highest concentrations Consider lower tempera- ture treatment (i.e., hy- drolysis/azeotropic boiling point, biological process- es) when possible Consider local power Minimize water use during drilling operations Limit the use of oxidizers to periods of peak extraction rates Limit the use of oxidizers to periods of peak extraction rates Consider combined cryogenic technology for vapor treatment to produce a recyclable waste Limit heat losses at surface and perimeter Consider timing peak energy use with non-peak power demand times, especially in summer months Reuse below grade system 	Planning and Scoping	Construction & Materials	Operation and Maintenance	Equipment and Waste
 Source in footprint evaluation (renewable energy sources are preferred) Consider phased treatment approach to reduce equipment size Minimize piping length between wells and treatment system Seek potential uses for waste heat Minimize for the statement approach to reduce are number of the statement system Minimize piping length between wells and treatment system Seek potential uses for waste heat Minimize piping length between wells and treatment system Seek potential uses for waste heat Minimize piping length between wells and treatment system Seek potential uses for waste heat Minimize piping length between wells and treatment system Seek potential uses for waste heat Minimize piping length between wells and treatment system Seek potential uses for waste heat Minimize piping length between wells and treatment system Seek potential uses for waste heat Minimize piping length between wells and treatment system Seek potential uses for waste heat Minimize piping length between wells and treatment system Seek potential uses for waste heat Minimize piping length between wells and treatment system Seek potential uses for waste heat Minimize piping length between wells and treatment system Seek potential uses for waste heat Seek	 Conduct detailed pre-design investigation (PDI) to define treatment area before design Limit treatment area to source zone with highest concentrations Consider lower temperature treatment (i.e., hydrolysis/azeotropic boiling point, biological processes) when possible Consider local power source in footprint evaluation (renewable energy sources are preferred) Consider phased treatment approach to reduce equipment size Minimize piping length between wells and treatment system Seek potential uses for waste heat 	 Minimize installation of new concrete or use cementitious replacement materials Favor coconut sourced GAC over coal and regenerate spent GAC Use regenerated GAC and send spent GAC for regeneration Minimize water use during drilling operations Minimize mobilizations for well installations Use direct push technology when feasible Consider compacted soil caps to reduce air intrusion Chose vapor capping materials high in recycled content that minimize heat losses 	 Limit the use of oxidizers to periods of peak extraction rates Consider combined cryogenic technology for vapor treatment to produce a recyclable waste Limit heat losses at surface and perimeter Consider timing peak energy use with non-peak power demand times, especially in summer months Coordinate with local power providers to optimize demand with excess power capacity Consider transitioning to polishing technologies that benefit from residual heat (e.g., bioremediation, persulfate injection) Refer to SVE and P&T resources for additional information 	 Reuse or re-inject extracted groundwater and condensate Evaluate potential benefits to minimizing discharges to POTW Utilize heat-exchangers and high efficiency equipment for steam generation and injection Reduce soil disposal volumes from drilling and installation activities Reuse below grade system infrastructure for future site geothermal heating and cooling systems Use efficient blowers for vapor recovery system Incorporate variable frequency drives (VFD) in blowers & pumps Consider smaller redundant units that can be taken off-line at late project phases

Not all GSR options are included in this graphic.

Department of Environmental

Conservation

Further Reference: USEPA Green Remediation Best Management Practices: Implementing In Situ Thermal Technologies

Guide for Implementing Green and Sustainable Remediation in Landfill Projects

Core Elements: 1. Materials & Waste; 2. Energy; 3. Air Emissions; 4. Water Consumption; and, 5. Land & Ecosystems

GSR Opportunities on Landfills: Energy Generation (landfill gas, solar or wind), Ecosystem Creation/Enhancement, Community Use & Passive Recreation **Note:** This document is intended for legacy landfills and not for the closure of modern operating landfills

 Ensure proposed cap area covers all waste Relocate and consolidate waste and minimize land user restrictions, when possible Source capping material locally Re-use soils/dredge materials in or under cap for grading Use permeable caps if appropriate: Reduce tFG management Allow for deep rooted plants Reduce tormwater runoff Plant native species on cap that require minimal maintenance Create high value habitat on/ around cap Consider incorporating renewable energy used for wates for hydraulic control Consider incorporating renewable energy used for wates for hydraulic control Consider incorporating renewable energy used for wates for hydraulic control Consider incorporating renewable energy used for wates for hydraulic control Consider incorporating renewable energy used for the cap to constructed wetlands for infiltrate outside of landfill for thirty powered equipment (use battery powered equipment) Minimize the use of synthetic materials in cap construction Minimize the use of synthetic materials in cap construction 	Landfill Closure & Capping	Landfill Gas (LFG) and Leachate	Maintenance	Monitoring
	 Ensure proposed cap area covers all waste Relocate and consolidate waste and minimize land use restrictions, when possible Source capping material locally Re-use soils/dredge materials in or under cap for grading Use permeable caps if appropriate: Reduce LFG management Allow for deep rooted plants Reduce stormwater runoff Plant native species on cap that require minimal maintenance Create high value habitat on/around cap Consider incorporating renewable energy generation into closure plan Minimize the use of synthetic materials in cap construction 	 Prevent uncontrolled/fugitive emissions Design leachate and LFG management systems based on site specific data Use LFG for energy generation if viable Consider passive venting if methane levels are low Power LFG and leachate recovery with renewable energy Operate active LFG systems intermittently, if appropriate, to reduce energy use Maintain leachate extraction at lowest flow rates for hydraulic control Consider constructed wetlands for leachate treatment Re-use treated leachate, or allow to infiltrate outside of landfill footprint 	 Use local contractors to conduct routine landscaping work Maintain & enhance high value ecosystems Prohibit the use of pesticides & herbicides on the cap Source cap repair material locally Minimize disposal of landscaping waste, re-use for mulch. Incorporate habitat areas that require minimal maintenance Minimize use of fossil fuel powered equipment (use battery powered equipment) 	 Reduce monitoring frequency over time, as appropriate Focus on collecting actionable data Use local staff and high efficiency, low emission vehicles for routine monitoring Use remote sensors and telemetry to collect data, reducing site visits Monitor habitat areas in addition to engineering controls Continue to seek footprint reductions during monitoring Use low-flow sampling techniques when possible to minimize purge volumes

Not all GSR options are included in this graphic.

Further Reference: USEPA Green Remediation Best Management Practices: Landfill Cover Systems & Energy Production